Mastering Python with Machine Learning

Python, Machine Learning, R Programming, NLP, NN, Deep Learning

Course Curriculum

Python Fundamentals / Prerequisites for AI

  • What is PL?
  • Python Interpreter 
  • How to run python code/latest version of Python 
  • First python program 
  • Python 2/ Python 3 
  • How does Python work? 
  • Data types 
  • Numbers and Math functions 
  • Operator precedence 
  • Exercise Variables/expressions/statements 
  • Augmented Assignment operator 
  • Strings 
  • String concatenation 
  • Type conversions 
  • Escape sequence 
  • Formatted strings 
  • String indexes 
  • Immutability 
  • Built in Functions and methods 
  • Booleans Type conversion 
  • Lists/slicing Matrix 
  • List Methods/2/3 
  • List unpacking 
  • Dictionaries-->Keys/methods/methods2 
  • Tuples 2 Sets 
  • Conditional Logic
  • Indentation in python
  • pgDictionaries-->Keys/methods/methods2 
  • Tuples 2 
  • Sets 
  • Conditional Logic 
  • Indentation in python 
  • Ternary operators 
  • Logical operators 
  • For loops Iterables 
  • Exercise: tricky counter 
  • Range()/Enumerator() 
  • While Loop 
  • Break/continue/pass
  • First Gui Exercise: Find duplicates 
  • Functions Parameters and arguments default parameters and keywords 
  • Return Methods vs functions 
  • Docstrings clean code *args and **kwargs 
  • Scope/rules global/local keywords why need scope? 
  • Pure functions map() Filter() zip() reduce() 
  • List comprehensions 
  • Set comprehensions 
  • Packages in python 

Machine Learning with Python

  • What is ML 
  • AI/ML/DS YT Recommendation Engine 
  • Types of ML 
  • Types of ML problems 
  • Features in DATA 
  • Splitting data and Picking Model Tuning and Comparison 
  • Underfitting and Overfitting Anaconda 
  • Environment Setup in Mac/Windows 
  • Jupyter notebook 
  • Pandas Introduction (Data Analysis) 
  • NumPY 
  • Matplotlib: Plotting and Data Visualization 
  • Scikit: Creating ML models 
  • Fitting Model into Data Making 
  • Predictions with the model 
  • Evaluation of an ML model 
  • Confusion Matrix 
  • Project Supervised Learning classification 
  • Data Engineering
  • What? Why? who? 
  • Learn SQL

Regression Models in ML through Python and R Programming

  • Simple Linear Regression 
  • Multiple linear regression 
  • Polynomial regression 
  • Support Vector Regression 
  • Decision Tree Regression 
  • Random Forest Regression 
  • Logistic Regression

Natural Language Processing in Python

Neural Networks and Deep Learning

  • Artificial Neural Network
  • Convolution Neural Networks

Enroll in the Course
(As Limited Seats Available!)

US $249

Incl. 18% GST
Duration:
12 Weeks (3 Sessions per week)
Fees:
US $249
Instructor:
Nikita Chandiramani
Time:
8.00 - 9.00 PM IST
Start Date:
February 3, 2025
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Why SGTS?

Mentor: Sanjay Gupta (18+ yrs. of Education and IT Industry Experience)

Live Interactive Video Sessions with Q&As

Life Time Access to Live Session Recordings

Plenty of Hand-on Scenarios

Interaction with Industry Experts/Professionals

Limited Seats

End-to-End Project Implementation

Admin with QA and BA Skillset

Development with Apex, Integration, LWC & OmniStudio

Sales Cloud, Service Cloud & Experience Cloud Sessions

Soft Skills and Consulting Skills Training Sessions

Hundreds of pre recorded videos and sessions.

Interview Preparation and Tips

1:1 Mock Interview Sessions

Resume Preparation

How SGTS Works?

Register for Course

Don't miss out on the chance to elevate your knowledge and achieve your goals – secure your spot now by registering for our course!

Demo Sessions

Once you register - take the first step toward a journey of discovery and skill enhancement. Join our demo sessions and envision the possibilities!

Fee Payment

Once you are happy with the Demo – invest in your success by paying the course fee and stepping into a brighter future.

Register Now

Thank you! Your submission has been received!

Stay tuned for more information...

For any additional queries reach out to the support team


Contact us
Oops! Something went wrong while submitting the form.